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Label-free LC-MS/MS proteomics has proven itself to be a powerfulmethod for evaluating protein identification and
quantification from complex samples. For comparative proteomics, several methods have been used to detect the
differential expression of proteins from such data. We have assessed seven methods used across the literature for
detecting differential expression from spectral count quantification: Student's t-test, significance analysis of micro-
arrays (SAM), normalised spectral abundance factor (NSAF), normalised spectral abundance factor-power law glob-
al error model (NSAF-PLGEM), spectral index (SpI), DESeq and QSpec. We used 2000 simulated datasets as well as
publicly available data from a proteomic standards study to assess the ability of thesemethods to detect differential
expression in varying effect sizes and proportions of differentially expressed proteins. At two false discovery rate
(FDR) levels, we find that several of themethods detect differential expressionwithin the datawith reasonable pre-
cision, others detect differential expression at the expense of low precision, and finally, others which fail to identify
any differentially expressed proteins. The inability of these sevenmethods to fully capture the differential landscape,
even at the largest effect size, illustrates some of the limitations of the existing technologies and the statisticalmeth-
odologies.
Significance: In label-free mass spectrometry experiments, protein identification and quantification have always
been important, but there is now a growing focus on comparative proteomics. Detecting differential expression in
protein levels can inform on important biological mechanisms and provide direction for further study. Given the
high cost and labour intensive nature of validation experiments, statistical methods are important for prioritising
proteins of interest. Here, we have performed a comparative analysis to investigate the statistical methodologies
for detecting differential expression and provide a reference for future experimental designs.
This article is part of a Special Issue entitled: Computational Proteomics.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Protein detection and quantification have vastly improved in recent
years with the technological advances of mass spectrometry. Liquid
chromatography tandem mass spectrometry (LC-MS/MS) has become
the method of choice for quantitative proteomics and can now assess
protein samples in a bottom-up format with reasonable throughput.
There are several methods for tagged or isotope labelled quantification,
including isobaric tags for relative and absolute quantitation (iTRAQ)
[1], tandem mass tags (TMT) [2] and stable isotope labelling by amino
acids in cell culture (SILAC)[3]. These methods offer multiplexing capa-
bility at the requirement of more complex protocols and expensive re-
agents. However, SILAC is unsuitable for clinical samples and the
tagged methods have the limitation that co-isolation of multiple
ational Proteomics.
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precursor ions can interfere with accurate quantitation. Instead, label-
free methods aim to provide relative quantification without isotopic la-
belling and are becoming increasingly popular in proteomics [4–6].

For label-free proteomics, one can quantify proteins by using
their spectral counts as an approximation of protein abundance.
Spectral counts are simply the total number of spectra per identified
protein and can be easily calculated from the detected peptides by
LC-MS/MS; within a protein, they can be taken as an semi-
quantitative approximation as a protein with higher abundance in
one group should have more identified spectra than the protein
with lower abundance in another. Several methods have been pro-
posed and applied which take advantage of the relationship between
the spectral counts and protein abundance to detect differential ex-
pression. The primary goal of a differential expression analysis is to
detect as many truly differentially expressed proteins as possible
(reducing the number of false negatives or type II errors) while con-
trolling for the number of false positives (type I errors). As label-free
methods can quantify hundreds to thousands of proteins, multiple
testing corrections must be applied to differential expression
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analyses to control the number of false positives or type I errors. One ap-
proach is to control the false discovery rate (FDR), which is the expected
proportion of false positives within a set of significantly differentially
expressed proteins. For example, if one had 100 proteins which are de-
tected as differentially expressed at a 5% FDR, five of them are expected
to be false positives. This is a separate FDRmeasure than the one associ-
ated with protein inference and identification.

In this study, we chose seven methods for identifying significant
differences in spectral count based protein expression. These
methods were chosen from the literature and included methods
originally proposed for differential expression analysis in microar-
rays and RNA-seq as well as those specific to proteomics. We includ-
ed the significance analysis of microarrays (SAM) [7] and the
normalised spectral abundance factor coupled with a power law
global error model [8]; bothmethodswere designed for gene expres-
sionmicroarray data and have been used for the analysis of label-free
MS proteomics [9]. The spectral index (SpI) [10] and QSpec [11]
methods were included as methods which were developed specifi-
cally for spectral count quantification and have been used in several
studies [12,13]. Others have now taken advantage of the methods
developed for RNA-seq experiments and applied them in spectral
count proteomic studies [14,15], so we have also included the
DESeq method [16]. Finally, we included the t-test and normalised
spectral abundance factor (NSAF) [17] coupled with the t-test. The
t-test is one of the most commonly used statistical tests and has
been used to detect differential protein expression [18].

To evaluate these methods, we used 2000 simulated datasets as
well as data with a known spike-in difference from the CPTAC
standards assessment [19,20]. We investigated the ability of these
seven methods to identify differential expression with respect to
several different measures; 1) effect sizes, or the percentage of
abundance difference, 2) proportion sizes, or the percentage of
proteins within a dataset that are differentially expressed and 3) at
two levels of multiple testing corrections. Within this evaluation,
we provide insight into the performance of these methods with
respect to these measures and suggestions for their use in future
proteomic studies.
Fig. 1. Simulation data scheme.Overviewof the simulated data generationwith different effect s
SPI— spectral index; SAM— significance analysis of microarrays; QSPEC— QSpec; NSAF— norm
power law global error model; DESEQ— DESeq.
2. Materials and methods

2.1. Simulated data

Real data from two previously published studies were used as
the basis for the simulated data (Fig. 1). The first dataset was from LC-
MS/MS study investigating the proteomic changes resulting from the
addition of an exogenous matrix metallopeptidase within a population
of three cases and three controls [21]. The second was a shotgun prote-
omic analysis of hibernating arctic squirrels within a population of four
cases and four controls [9]. 2000 datasets were simulated— 1000 based
on the data from the matrix metallopeptidase study (denoted D1) and
1000 based on the data from the arctic squirrel study (denoted D2). In
D1, each of the 1000 datasets consisted of simulated counts from 606
proteins and in D2, each of the 1000 datasets consisted of simulated
counts from 3538 proteins. Spectral count data can be modelled as a
Poisson distribution where the probability of observing a count, n,
with respect to the expected count, γ, is given in Eq. (1).

f n;γð Þ ¼ γne−γ

n!
ð1Þ

In our simulations, we set γ to the average spectral count of an indi-
vidual protein from a real dataset and used it to derive a set of Poisson
distributed random deviates to simulate the spectral counts for a
given protein. This was to preserve the relationship between the spec-
tral count abundance and protein length, as the number of amino
acids is used by several of the statistical methods. To incorporate effect
sizes into the simulated data, we randomly sampled 20 simulated pro-
teins and added additional counts to one group as follows

SCi; j ¼ SCi; j � 1þ pð Þ ð2Þ

where SCi,j is the simulated spectral count from the jth sample of protein
i and p is one of 0.2 (20%), 0.5 (50%), 0.8 (80%), 1 (100%), and 2 (200%).
In both D1 and D2, one hundred datasets at each effect level were sim-
ulated, resulting in 500 datasets from each. The set of 500 (100
izes anddifferent proportions of differentially expressedproteins. T TEST— Student's t-test;
alized spectral abundance factor; NSAF-PLGEM— normalized spectral abundance factor-
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simulated datasets in each of the five effect sizes) from D1 is denoted as
D1.1 and similarly, the set of 500 from D2 is denoted as D2.1.

To simulate proportion sizes, five percentages (1%, 5%, 10%, 20%,
50%) of the total number of proteins were randomly sampled from
simulated data and for each of those proteins, one of the effect sizes
(0.2 (20%), 0.5 (50%), 0.8 (80%), 1 (100%), 2 (200%)) was added
following Eq. (2). There were 100 datasets at each of the effect sizes
(500 in total) for both D1 and D2. These sets of 500 were denoted
D1.2 and D2.2. For D1.2, the number of simulated differentially
expressed proteins for each is as follows 1% — 6 proteins, 5% — 30 pro-
teins, 10% — 61 proteins, 20% — 121 proteins and 50% — 303 proteins;
for D2.2, the number of simulated differentially expressed proteins for
each is as follows 1% — 35 proteins, 5% — 177 proteins, 10% — 355 pro-
teins, 20%— 710 proteins and 50%— 1774 proteins. These 2000 datasets
are available at https://zenodo.org/record/19030.

3. CPTAC technology assessment (2006–2011)

Data from the Clinical Proteomic Technologies for Cancer Initiative
was used to evaluate the seven differential expression methods with
an experimental data set. The CPTAC initiative was established to ad-
dress the variability and reproducibility issues that are involved in
high-throughput proteomics [19,20]. Data from Study 6 was used,
where 48 human proteins (Sigma UPS1) at five concentration levels
were spiked into yeast samples. mzml files from the LTQ-Orbitrap 56
experiment were downloaded from the CPTAC data portal (https://
cptac-data-portal.georgetown.edu/cptac/study/list?scope=Phase+I)
and the corresponding fasta file from the Tabb group (http://fenchurch.
mc.vanderbilt.edu/misc/20080131-SGD-48-NCI20-BSA-Cntm-reverse.
fasta). Spectra to peptide matching was performed using MyriMatch
version 2.1 using the default parameters (see Supplemental materials)
[22]. Protein inference was performed with IDPicker version 3.1, using
a target-decoy strategy with the top-ranked PSM and a parsimonious
protein inference algorithm. Again, the default parameters were used
(see Supplemental materials) [23]. Briefly, tryptic cleavage defined to
be at the carboxyl side of any Lys or Arg, except for those before a Pro
and precursor ions were required to be within 10 ppm. A 2% false iden-
tification rate and a two spectra minimum were used for protein
inference.

4. Statistical methods

The following seven differential expressionmethodswere compared
at both a 5% or 1% false discovery rate (FDR) or equivalent for differen-
tial expression. The methods were used with their default parameters
unless otherwise stated. The ROC curves were visualised using the
ROCR package [24].

4.1. Student's t-test

The Student's t-test is a hypothesis test that evaluates whether the
means from two normally distributed populations are equal. Here, an
unpaired, unequal variance, two-tailed Student's t-test was used to
detect differential expression. The FDR was calculated using the
Benjamini–Hochberg method [25]. The implementation was in R.

4.2. Significance analysis of microarrays (SAM)

The significance analysis of microarrays (SAM) was used to detect
differential expression. SAM assigns a score to each protein based
upon the differences in expression levels relative to the standard devia-
tion and provides a permutation based FDR estimate [7]. Here, SAMwas
usedwith the non-parametricWilcox rank sum statistic as the paramet-
ric t-test was evaluated independently. The implementation was avail-
able in the SigGenes R package in Bioconductor [7].
4.3. Spectral index (SpI)

The spectral index (SpI) method, proposed by Fu et al., calculates a
metric (SpI) of protein abundance within each group relative to the
number of sample with detectable peptides [10]. The significance of a
given SpI is determined empirically via permutation testing. The imple-
mentation was in R.

4.4. Normalized spectral abundance factor (NSAF)

The normalized spectral abundance factor (NSAF) values were cal-
culated for each protein identified [17]. Spectral count values of 0
were replaced by an empirically derived fractional value. The value
was calculated by determining the smallest value between 0 and 1,
which provided the best fit to a normal distribution (Shapiro–Wilks
test). The NSAF values were then used with the Student's t-test with a
Benjamini–Hochberg correction to detect differential expression [25].
The implementation was in R.

4.5. Normalized spectral abundance factor-power law global error model
(NSAF-PLGEM)

The NSAF values were calculated for each protein as in the previous
section. The NASF valueswere fit to a power-lawglobal errormodel and
differentially expressed proteins are identified through a permuted
signal-to-noise (STN) test statistic, which controls for multiple testing
[8]. The implementation was in R and used the PLGEM package in
Bioconductor [8].

4.6. QSpec

QSpec calculates differential expression based on a hierarchical
Bayes estimation of generalised linear mixed effects model [11]. Per
the recommended parameters, 100,000 iterations were used with a
10,000-iteration burn in for the MCMC parameter estimation [11] and
the proteins were filtered so that only proteins with counts in two or
more samples per group were retained. QSpec version 1.2.2, released
as a component of QProt, was used. A z-score thresholding was used
to calculate the FDR.

4.7. DESeq

DESeq uses a negative binomialmodel to test for differential expres-
sion in count data using estimates of variance-mean dependence [16].
Due to the low count numbers in proteomics compared to RNA-seq, a
Benjamini–Hochberg FDR correction was applied instead of the default
[25]. The implementation was in R using the DESeq2 Bioconductor
package [16].

5. Results

5.1. Simulated datasets

Here, we used two previously published datasets [9,21] to provide
the foundation for the simulation study. Fig. 1 shows the schematic for
deriving the simulated data; 1000 datasets were simulated from each
with varying levels of effect sizes and proportions of significantly differ-
entially expressed proteins (see Materials and methods). The datasets
derived from Stegemann et al. (D1) contained spectral count protein
levels across six samples— three in the first group and three in the sec-
ond group [21]. The first 500 of the 1000 simulated datasets, denoted
D1.1, contained 20 differentially expressed proteins at five effect sizes
(20%, 50%, 80%, 100%, 200%; 100 datasets at each level, Fig. 1). The sec-
ond 500 out of the 1000 datasets, denoted D1.2, contained datasets
with five different proportions of differentially expressed proteins (1%,
5%, 10%, 20%, 50%; 100 datasets at each level; Fig. 1). The second set of
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1000 datasets (D2) was generated from Shao et al. [9]; these simulated
datasets contain spectral count levels across eight samples— four in the
first group and four in the second. The same simulation schematic was
applied, where the first 500 datasets, denoted D2.1, contained 20 simu-
lated or true differentially expressed proteins at five effect sizes and the
second 500, denoted D2.2, contained five proportions of differentially
expressed proteins (Fig. 1). Each of the seven methods was applied to
all 2000 simulated datasets and the significance level was set to the
same false discovery rate (FDR) (either 5% or 1%) to ensure comparabil-
ity across the methods.

Across each set of 100 datasets within the scheme, the number of
true positives, false positives, true negative and false negatives returned
by each method were averaged to obtain an estimate of the perfor-
mance of the method. A true positive is where a protein has had an ef-
fect size (20%, 50%, 80%, 100%, 200%) added to one group and the
given method has detected a significant difference (FDR b 5% or
Fig. 2. Sensitivity and precision values for D1.1 and D2.1. The sensitivity and precision values for
are shown for both 1% (red) and 5% (blue) FDR levels; the confidence intervals shown are the sta
each effect size.
FDR b 1%) between the two groups. In the following text, these averaged
values will be used to calculate the sensitivity, specificity and precision
as follows,

Sensitivity ¼ TP
TP þ FN

ð3Þ

Specificity ¼ TN
TN þ FP

ð4Þ

Precision ¼ TP
TP þ FP

ð5Þ

where the TP is the average number of true positives, FP is the average
number of false positives, TN is the average number of true negatives
and FN is the average number of false negatives. Each metric ranges
from 0 to 1, with lower values reflecting poor performance.
each the of five effect sizes (20%, 50%, 80%, 100%, 200%) for datasets D1.1 and D2.1. Values
ndard deviations of the sensitivity and precision values across the one hundred datasets at
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5.2. Impact of effect size

For each method applied to D1.1, we calculated the sensitivity and
precision values for both a 5% FDR (blue) and a 1% FDR (red) level across
the seven methods (Fig. 2). For both FDR b 5% and FDR b 1%, the effect
size of 20% proved to be at the limit of detection across the methods;
the NSAF-PLGEM method was the only one with sensitivity greater
than 0.01 (0.13), but at the expense of low precision (0.06) at a 5%
FDR. Overall, NSAF-PLGEM identified had the greatest sensitivity (both
5% FDR and 1% FDR) in the five scenarios; however, the corresponding
precision values were considerably lower than the other methods
(Fig. 2, Supplemental Table S1). The SAM, NSAF and SPI methods were
the others to exhibit low precision values across the scenarios, but the
sensitivity values did not reach above 0.05 at either a 5% FDR or a 1%
FDR level. DESeq and QSpec had the same specificity (1.00) across all
five scenarios but DESeq outperformed QSpec with respect to precision
and sensitivity at the lower effect sizes (20%, 50% and 80%, Fig. 2 and
Supplemental Table S1) while QSpec had a greater sensitivity at the
higher effect sizes (100% and 200%, Fig. 2 and Supplemental Table S1).
The t-test showed high specificity (1.00) and precision (0.73–1.00)
across the five effect sizes, but had low sensitivity for each (0.00050–
0.061). The receiver-operating characteristic (ROC) curves for the D1.1
with five varying effect sizes (Supplemental Fig. 1a–e; 20%, 50%, 80%,
100%, 200%) illustrate the sensitivity, specificity and area under the
curve (AUC) values for each method at each effect size. The SAMmeth-
od performed poorly with the AUC b 0.50 in each of the effect sizes, and,
as the effected sizes increased, the AUC value decreased (Supplemental
Table S1).

As in D1.1, the 20% effect size was at the limit of detection in D2.1.
For the 20% effect size, both the NSAF-PLGEM and SAM methods had
sensitivity greater than 0.01 (Fig. 2), but their respective precision
valueswere both 0.01 at a 5% FDR and 0.01 and 0.02 at a 1% FDR, respec-
tively (Supplemental Table S1). The SpI, SAM and NSAF methods again
showed both low sensitivity and low precision values (Fig. 2) for D2.1.
ROC curves (Supplemental Fig. 2a–e; 20%, 50%, 80%, 100%, 200%) and
corresponding AUC values (Supplemental Table S1) were generated
for D2.1. The trends across these methods were in accordance with
those found in D1.1 (Supplemental Fig. 1); for six out of sevenmethods,
the AUC values increased with the corresponding increase in effect size,
with the SAMmethod showing the opposite relationship between AUC
and effect sizes.

5.3. Impact of proportion size

Here, we varied the proportion of significantly expressed proteins
across the five scenarios. Fig. 3 shows the sensitivity and precision of
each method across the five proportions for FDR b 5% (blue) and
FDR b 1% (red). For each of the methods, the sensitivity values were
low and stable across the five proportions and two FDR levels. The pre-
cision values, however, varied across the five proportion sizes for each,
with the exception of the SpI method. For the NSAF-PLGEM, NSAF,
SAM and t-test, the increase in precision values followed the increase
in the proportion of significantly differentially expressed proteins. For
DESeq and QSpec, the highest proportions (20%, 50%) resulted in
lower precision values, especially the QSpec method at a 1% FDR
(Fig. 3). Supplemental Fig. 3 shows the ROC curves for D1.2 (Supple-
mental Fig. S3a–e; 1%, 5%, 10%, 20%, 50%). The corresponding sensitivity,
specificity and AUC values for eachmethod at each proportion are given
in Supplemental Table S2. The AUC values for six out of the seven
methods were of a smaller range across proportions than the range
across effect sizes (Supplemental Table S2). The SAM method, again,
showed a different trend, whereby the AUC values increased as the pro-
portion of differentially expressed proteins increased (AUC = 0.29–
AUC= 0.58).

The final set of simulations from Shao et al., D2.2 showed similar
trends to those of D1.2 across the sensitivity and precision values
(Fig. 3). Supplemental Fig. S4 (a–e; 1%, 5%, 10%, 20%, 50%) and Supple-
mental Table S2 give the ROC curves and sensitivity, specificity and
AUC values. In comparing these AUC values to those from the same pro-
portion levels in D1.2, six of the seven methods showed similar trends.
The t-test, NSAF, NSAF-PLGEM, SpI and DESeq methods were all of sim-
ilar ranges across the proportions and the SAM method showed an in-
crease in AUC values as the proportion of differentially expressed
proteins increased (AUC=0.29–AUC=0.44). TheQSpecmethod, how-
ever, deviated from the trend observed in the first dataset. The AUC
value corresponding to the final proportion (50%, Supplemental
Fig. 4e) was 0.52, which was a decrease from 0.88 in the previous pro-
portion (20%).

5.4. Overlap in methods

We also investigated to what extent the methods overlapped in de-
tecting significant differential expression. The overlap was approximat-
ed by consecutively calculating the sensitivity and precision values
across the methods within the 100 datasets of a given scenario. The
methods were averaged in the order of DESeq, QSpec, t-test, NSAF-
PLGEM, NSAF, SAM and SpI; the order was based on their individual
performances.

The sensitivity and precision values are given in Table 1 for D1.1 and
D2.1 and Table 2 for D1.2 and D2.2. For DESeq, QSpec and the t-test, the
average sensitivity and precision remained stable across the scenarios at
both FDR levels. As an example, in the final scenario of D1.1 (FDR b 5%,
200% effect size; Table 1e), the sensitivities for DESeq, DESeq + QSpec
and DESeq+QSpec+ t-test are 0.38, 0.52 and 0.52with corresponding
precision of 0.99 for all three. The increase in sensitivity coupled with
high, stable precision indicate that the true differential expression de-
tected byDESeq is also identified by one of the other two, without an in-
crease in the number of false positives. The inclusion of NSAF-PLGEM
(DESeq+QSpec+ t-test +NSAF-PLGEM) increased the average sensi-
tivity from 0.52 to 0.79, but at the decrease in the precision by over two-
thirds (from 0.99 to 0.28). The inclusion of the NSAF and SAMmethods
does not appreciably change the average sensitivity but decreases the
average precision (Tables 1 and 2). As the NSAF and SpI methods did
not detect many positives, true or false, their inclusion did not alter
the average sensitivity or precision. This trend was apparent over the
five scenarios in all four datasets, D1.1, D2.1, D1.2 and D2.2 (Tables 1
and 2).

5.5. CPTAC data

Finally, we analysed results from the Clinical Proteomic Technolo-
gies for Cancer Initiative Technology Assessment (2006–2011), pub-
lished by the Clinical Proteomic Tumor Analysis Consortium (CPTAC)
[19,20], which focused on the pre-analytical and analytical variability
intrinsic to proteomic experiments. This CPTAC study was a large-
scale investigation involving several institutions with nine individual
studies assessing different experimental aspects. We utilised data from
the Consortium's Study 6, where the Unbiased Discovery Working
Group of the consortium spiked-in human proteins of varying concen-
trations to evaluate protein identification. 48 human proteins (UPS1)
of five varying concentrations were added to a yeast sample consisting
of 2522 yeast proteins. For this comparison, we used the results from
the LTQ-Orbitrap 56. UsingMyriMatch [22] and IDPickers [23] to derive
spectral counts from the available spectra data, the LTQ-Orbitrap 56
identified spectra from 43 out of the 48 spiked-in proteins and 1475
out of the 2522 yeast proteins. The yeast samples without the spike-in
were used as controls and the yeast plus the 48protein spike-in samples
were considered cases; there were three samples in each group.

We used the yeast proteins combined with the human spiked-in
proteins to estimate the type I and type II error rates, where yeast pro-
teins which were identified as significantly differentially expressed
can be used as a measure of the false positive rate and the human



Fig. 3. Sensitivity and precision values for D1.2 and D2.2. The sensitivity and precision values for each the of five proportion sizes (1%, 5%, 10%, 20%, 50%) for datasets D1.2 and D2.2. Values
are shown for both 1% (red) and 5% (blue) FDR levels; the confidence intervals shown are the standard deviations of the sensitivity and precision values across the one hundred datasets at
proportion size.
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proteins which are not identified as significantly expressed can be used
as ameasure of the false negative rate. As explored in the CPTAC studies
[19,20], both the protein identification and differential expression de-
tection were limited at the smallest concentration (0.25 fmol/μL UPS1,
Table 3). Only the SAM and NSAF-PLGEM methods detected any true
positives (sensitivity of 1 and 0.16, 5% FDR) at this concentration, albeit
at the expense of a high false positive rate (precision of 0.25 and 0.07, 5%
FDR). At the highest concentration (20 fmol/μL UPS1, Table 3), both the
QSpec and the DESeq methods performed reasonably well, with sensi-
tivities of 0.72 and 0.81 and precision of 0.86 and 0.88, respectively.
The SAMmethod identified all 43 proteins at each of the five concentra-
tions and both FDR levels, but did so at the expense of a low precision
rate, ranging from 0.25 to 0.16 at a 5% and 1% FDR level. The SpI and
NSAF methods failed to detect any differential expression, either true
or false positives, at any of the concentration levels investigated.
6. Discussion

Label-free proteomics is becoming a credible alternative for quanti-
fying protein abundance for differential expression analyses, at least in
samples of low tomediumcomplexity. Accurate detection of differential
expression in these experiments is vital for prioritisingdownstreamval-
idation experiments and for explaining underlying biological phenome-
na. Given that validation experiments are often costly and labour
intensive, detecting proteins that are truly differentially expressed is
of utmost importance. Here we have evaluated seven methods for de-
tecting differential expression from spectral count data. These methods
were chosen due to their use in the literature and included methods
originally proposed for differential expression analysis in microarrays
and RNA-seq (SAM, NSAF-PLGEM, DESeq), those specific to proteomics
(SpI, NSAF, QSpec) and the commonly used t-test. Using the simulated



Table 1
Overlap effect sizes in simulated datasets.

D1.1 D2.1

FDR 1% FDR 5% FDR 1% FDR 5%

Sensitivity Precision Sensitivity Precision Sensitivity Precision Sensitivity Precision

a) 20% effect sizea

DESEQ 1 × 10−3 0.02 3 × 10−3 0.06 1 × 10−3 0.02 1 × 10−3 0.02
DESEQ + QSPEC 1 × 10−3 0.02 4 × 10−3 0.08 1 × 10−3 0.02 1 × 10−3 0.02
DESEQ + QSPEC + TTEST 1 × 10−3 0.02 4 × 10−3 0.08 1 × 10−3 0.02 1 × 10−3 0.02
DESEQ + QSPEC + TTEST + NSAF_PLGEM 0.02 0.06 0.13 0.06 0.04 0.02 0.04 0.02
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF 0.02 0.06 0.13 0.06 0.04 0.02 0.08 0.00
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM 0.05 0.03 0.16 0.05 0.08 0.00 0.08 0.00
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM + SPI 0.05 0.03 0.16 0.05 0.08 0.00 0.08 0.00

b) 50% effect sizea

DESEQ 0.04 0.52 0.04 0.61 8 × 10−3 0.16 8 × 10−3 0.16
DESEQ + QSPEC 0.04 0.52 0.05 0.61 8 × 10−3 0.16 9 × 10−3 0.18
DESEQ + QSPEC + TTEST 0.04 0.52 0.05 0.62 8 × 10−3 0.16 9 × 10−3 0.18
DESEQ + QSPEC + TTEST + NSAF_PLGEM 0.12 0.29 0.34 0.14 0.16 0.08 0.16 0.08
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF 0.12 0.29 0.34 0.14 0.16 0.08 0.16 0.01
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM 0.12 0.08 0.35 0.11 0.16 0.01 0.16 0.01
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM + SPI 0.12 0.08 0.35 0.11 0.16 0.01 0.16 0.01

c) 80% effect sizea

DESEQ 0.09 0.84 0.11 0.85 0.03 0.45 0.04 0.52
DESEQ + QSPEC 0.09 0.84 0.13 0.86 0.03 0.48 0.05 0.58
DESEQ + QSPEC + TTEST 0.09 0.84 0.13 0.87 0.03 0.48 0.05 0.57
DESEQ + QSPEC + TTEST + NSAF_PLGEM 0.21 0.43 0.45 0.18 0.22 0.11 0.46 0.04
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF 0.21 0.43 0.45 0.18 0.22 0.11 0.46 0.04
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM 0.21 0.13 0.46 0.14 0.22 0.01 0.46 0.02
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM + SPI 0.21 0.13 0.46 0.14 0.22 0.01 0.46 0.02

d) 100% effect sizea

DESEQ 0.14 0.86 0.17 0.93 0.07 0.74 0.08 0.77
DESEQ + QSPEC 0.16 0.90 0.22 0.93 0.07 0.76 0.10 0.83
DESEQ + QSPEC + TTEST 0.16 0.90 0.22 0.92 0.07 0.76 0.10 0.82
DESEQ + QSPEC + TTEST + NSAF_PLGEM 0.28 0.51 0.54 0.21 0.26 0.12 0.49 0.04
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF 0.28 0.51 0.54 0.21 0.26 0.12 0.49 0.04
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM 0.28 0.17 0.54 0.17 0.27 0.02 0.49 0.02
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM + SPI 0.28 0.17 0.54 0.17 0.27 0.02 0.49 0.02

e) 200% effect sizea

DESEQ 0.33 0.99 0.38 0.99 0.17 0.98 0.22 0.98
DESEQ + QSPEC 0.44 1.00 0.52 0.99 0.27 0.99 0.33 0.98
DESEQ + QSPEC + TTEST 0.44 1.00 0.52 0.99 0.27 0.99 0.40 0.98
DESEQ + QSPEC + TTEST + NSAF_PLGEM 0.57 0.68 0.79 0.28 0.50 0.21 0.78 0.06
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF 0.57 0.68 0.79 0.28 0.50 0.21 0.78 0.06
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM 0.57 0.28 0.79 0.22 0.50 0.03 0.78 0.03
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM + SPI 0.57 0.28 0.79 0.22 0.50 0.03 0.79 0.03

a The number of differentially expressed proteins in D1.1 and D2.1 is 20.
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data, we were able to test how several factors influence the efficacy of
statistical methods to detect differential expression in spectral count
data. We looked at how each method performs in terms of the effect
size and the proportion of total proteins with significant differential ex-
pression as well as the total number of identified proteins. We
complemented these simulations with spike-in data from the CPTAC
standards experiments. While there are considerable differences be-
tween the seven methods, there is no singular method which
outperformed the rest.

6.1. Effect sizes

Weevaluated each of themethods across five effect sizes in two sim-
ulated datasets and one real dataset. We started with an effect size of
20% in D1.1 and D2.1, which corresponds to adding 20% of each value
in the simulated ‘case’ group; for the CPATC data, the lowest ‘effect
size’, given in concentrations, was 0.25 fmol/μL UPS1. In both the simu-
lated data and CPATC data at this level, each of the methods had low
sensitivity values (Fig. 2, Table 3); the only methods that detected any
true differential expression did so at the expense of a high number of
false positives. This suggests that if the differences between the groups
of samples are expected to be small or marginal, quantification by
spectral counts may not be able to provide the resolution to detect
them by any statistical method; the technical limitations of the down-
stream analyses are an important consideration for experimental de-
sign. As the experimental technologies develop and the sensitivity and
resolution improve, these methods may inherently become more pow-
erful at detecting low levels of differential expression.

As the effect sizes increased, the sensitivity increased for the t-test,
NSAF-PLGEM, DESeq and QSpec; however, for the simulated data,
no method managed to detect all of the differentially expressed
proteins at any of the effect sizes at either a FDR b 5% or FDR b 1%.
In both the simulated data and the CPTAC data, there is a trade off
between the true positives and false positives; this is further illustrated
in estimating the overlap between methods. In combining the sensitiv-
ity and precision from DESeq, QSpec and the t-test, we see that
the methods detected true differential expression, as reflected in the
sensitivity values, with precision closer to 1 (Table 1). There was an in-
crease in sensitivity when SAM and NSAF-PLGEM were included, but
therewas a disproportionate decrease in the precision. Estimating over-
lap is difficult to dowith sevenmethods, andwe acknowledge that con-
secutively averaging the methods is dependent on the order in which
the methods are averaged. However, the comparison does provide
some insight.



Table 2
Overlap proportion sizes in simulated datasets.

D1.2 D2.2

FDR 1% FDR 5% FDR 1% FDR 5%

Sensitivity Precision Sensitivity Precision Sensitivity Precision Sensitivity Precision

a) 1% proportiona

DESEQ 0.10 0.45 0.13 0.52 0.05 0.80 0.06 0.83
DESEQ + QSPEC 0.12 0.52 0.14 0.59 0.06 0.88 0.08 0.90
DESEQ + QSPEC + TTEST 0.12 0.52 0.14 0.59 0.06 0.88 0.09 0.89
DESEQ + QSPEC + TTEST + NSAF_PLGEM 0.21 0.18 0.42 0.05 0.23 0.17 0.44 0.06
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF 0.21 0.18 0.42 0.05 0.23 0.17 0.44 0.06
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM 0.21 0.04 0.42 0.04 0.23 0.02 0.45 0.03
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM + SPI 0.22 0.04 0.42 0.04 0.23 0.02 0.45 0.03

b) 5% proportionb

DESEQ 0.10 0.99 0.13 0.99 0.06 1.00 0.09 1.00
DESEQ + QSPEC 0.14 1.00 0.18 0.99 0.09 1.00 0.13 0.99
DESEQ + QSPEC + TTEST 0.14 1.00 0.18 0.99 0.09 1.00 0.16 0.98
DESEQ + QSPEC + TTEST + NSAF_PLGEM 0.24 0.55 0.44 0.24 0.24 0.54 0.47 0.26
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF 0.24 0.55 0.44 0.24 0.24 0.54 0.47 0.26
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM 0.24 0.21 0.45 0.19 0.25 0.12 0.48 0.15
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM + SPI 0.24 0.21 0.45 0.19 0.25 0.12 0.48 0.15

c) 10% proportionc

DESEQ 0.12 1.00 0.15 1.00 0.07 1.00 0.09 1.00
DESEQ + QSPEC 0.15 1.00 0.19 1.00 0.09 1.00 0.14 0.99
DESEQ + QSPEC + TTEST 0.15 1.00 0.20 0.99 0.10 1.00 0.24 0.98
DESEQ + QSPEC + TTEST + NSAF_PLGEM 0.24 0.74 0.44 0.41 0.25 0.72 0.51 0.45
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF 0.24 0.74 0.44 0.41 0.25 0.72 0.51 0.45
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM 0.25 0.35 0.45 0.34 0.25 0.24 0.51 0.29
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM + SPI 0.25 0.35 0.45 0.34 0.25 0.24 0.51 0.29

d) 20% proportiond

DESEQ 0.19 1.00 0.13 1.00 0.06 1.00 0.11 0.99
DESEQ + QSPEC 0.12 1.00 0.17 0.99 0.10 1.00 0.19 0.98
DESEQ + QSPEC + TTEST 0.12 1.00 0.18 0.98 0.12 0.99 0.31 0.97
DESEQ + QSPEC + TTEST + NSAF_PLGEM 0.23 0.86 0.45 0.61 0.26 0.86 0.54 0.65
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF 0.23 0.86 0.45 0.61 0.26 0.86 0.54 0.65
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM 0.24 0.55 0.46 0.54 0.27 0.43 0.54 0.49
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM + SPI 0.24 0.55 0.46 0.54 0.27 0.43 0.54 0.49

e) 50% proportione

DESEQ 0.07 0.88 0.09 0.84 0.04 0.89 0.04 0.99
DESEQ + QSPEC 0.07 0.88 0.09 0.84 0.04 0.89 0.07 0.98
DESEQ + QSPEC + TTEST 0.07 0.88 0.18 0.89 0.14 0.97 0.12 0.97
DESEQ + QSPEC + TTEST + NSAF_PLGEM 0.22 0.92 0.46 0.83 0.32 0.95 0.22 0.65
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF 0.22 0.92 0.46 0.83 0.32 0.95 0.22 0.65
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM 0.23 0.79 0.47 0.80 0.33 0.75 0.22 0.49
DESEQ + QSPEC + TTEST + NSAF_PLGEM + NSAF + SAM + SPI 0.23 0.79 0.47 0.80 0.33 0.75 0.22 0.49

a The number of differentially expressed proteins in D1.2 is 6 and in D2.2 is 35.
b The number of differentially expressed proteins in D1.2 is 30 and in D2.2 is 177.
c The number of differentially expressed proteins in D1.2 is 61 and in D2.2 is 355.
d The number of differentially expressed proteins in D1.2 is 121 and in D2.2 is 710.
e The number of differentially expressed proteins in D1.2 is 303 and in D2.2 is 1774.
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In the CPTAC data, the SAM method detected all 43 differentially
expressed proteins at each concentration, but it also detected a large
proportion of false positives (Table 3). In accordancewith the simulated
data, QSpec and DESeq performed reasonably well while SpI and NSAF
failed to detect any differential expression. The agreement between
the CPTAC data and the simulated data suggests that our simulated
datasets via Poisson sampling were representative of experimental
label-free proteomic data.

6.2. Proportion sizes

WithinD1.2 andD2.2, the increase in the proportion (and total num-
ber of differentially expressed proteins) was reflected in the increase of
the precision, but not the sensitivity (Fig. 3). Interestingly, the SAM
method shows an increase in the precision from the fourth (20%) to
the fifth (50%) scenarios (Fig. 3), which is reflected in the increase in
the AUC (Supplemental Figs. 4 and 5). Conversely, QSpec and DESeq
perform well across the proportion sizes, but there is a decrease in the
sensitivity and precision for both at the 50% proportion level. Part of
the reasoning behind the QSpec and DESeq methodologies is the ability
to address the power lost in small sample sizes by sharing information
across all proteins [11,16]. While this approach works well in some sce-
narios, here, the sharing of information across all proteins may be re-
ducing the power of the model to detect all but the proteins with the
greatest differential between the two groups. Pooling information
from samples with a high proportion of differential expression to con-
struct a model of no differential expression may influence the model
to reject differential expression of smaller effect sizes. Overall, QSpec
and DESeq have the highest precision, with stable sensitivity.

6.3. Underlying statistical distributions

The underlying assumptions of the methods seem to play a role in
the ability of the methods to detect differential expression and control
false positives; both the DESeq and QSpec methods use a distribution
appropriate for discrete count data (negative binomial and Poisson)
[11,16] rather than normalising the data to approximate a normal distri-
bution as in the NSAF-PLGEM, NSAF and SPI methods. DESeq and QSpec



Table 3
Differentially expressed proteins in CPTAC *^.

FDR 1% FDR 5%

Sensitivity Precision Sensitivity Precision

TTEST A 0.25 fmol/μL 0.00 0.00 0.00 0.00
B 0.74 fmol/μL 0.00 0.00 0.00 0.00
C 2.2 fmol/μL 0.00 0.00 0.00 0.00
D 6.7 fmol/μL 0.00 0.00 0.00 0.00
E 20 fmol/μL 0.16 0.88 0.49 0.84

SPI A 0.25 fmol/μL 0.00 0.00 0.00 0.00
B 0.74 fmol/μL 0.00 0.00 0.00 0.00
C 2.2 fmol/μL 0.00 0.00 0.00 0.00
D 6.7 fmol/μL 0.00 0.00 0.00 0.00
E 20 fmol/μL 0.00 0.00 0.00 0.00

SAM A 0.25 fmol/μL 1.00 0.25 1.00 0.25
B 0.74 fmol/μL 1.00 0.13 1.00 0.13
C 2.2 fmol/μL 1.00 0.13 1.00 0.13
D 6.7 fmol/μL 1.00 0.19 1.00 0.19
E 20 fmol/μL 1.00 0.16 1.00 0.16

QSPEC A 0.25 fmol/μL 0.00 0.00 0.00 0.00
B 0.74 fmol/μL 0.00 0.00 0.00 0.00
C 2.2 fmol/μL 0.09 0.80 0.14 0.86
D 6.7 fmol/μL 0.33 0.93 0.42 0.95
E 20 fmol/μL 0.67 0.88 0.72 0.86

NSAF A 0.25 fmol/μL 0.00 0.00 0.00 0.00
B 0.74 fmol/μL 0.00 0.00 0.00 0.00
C 2.2 fmol/μL 0.00 0.00 0.00 0.00
D 6.7 fmol/μL 0.00 0.00 0.00 0.00
E 20 fmol/μL 0.00 0.00 0.00 0.00

NSAF PLGEM A 0.25 fmol/μL 0.02 0.12 0.16 0.07
B 0.74 fmol/μL 0.19 0.35 0.35 0.09
C 2.2 fmol/μL 0.51 0.55 0.63 0.19
D 6.7 fmol/μL 0.81 0.67 0.91 0.26
E 20 fmol/μL 0.93 0.47 0.95 0.19

DESEQ A 0.25 fmol/μL 0.00 0.00 0.00 0.00
B 0.74 fmol/μL 0.00 0.00 0.00 0.00
C 2.2 fmol/μL 0.00 0.00 0.02 0.50
D 6.7 fmol/μL 0.35 0.94 0.44 0.95
E 20 fmol/μL 0.70 0.85 0.81 0.88

*^ The number of differentially expressed proteins is 43.
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perform comparably well with respect to their sensitivity and precision
across the varying effects and proportions.

We included the t-test as it is one of the most recognised statistical
tests and is often included in proteomic software packages, such as Scaf-
fold (Proteome software, Oregon, USA)While not performing as well as
QSpec or DESeq, the t-test detected true differential expression while
controlling the number of false positives, this is despite the spectral
count data violating assumption of a normal distribution. Coupling the
t-test with a normalisation factor (NSAF) actually resulted in lower sen-
sitivity and precision than the t-test alone (Figs. 2 and 3).

The SAM method, as implemented here, uses a non-parametric
Wilcox rank sum test statistic. The non-parametric method should mit-
igate the need for normalising to approximate a normal distribution, but
it also requires a larger sample size to achieve the same power as a para-
metric test. Because proteomic experiments are often small in size, we
simulated datasets with sample sizes of six and eight, respectively, po-
tentially limiting the power of the SAM method. The SAM method has
the option of a (parametric) modified t-test rather than the (non-para-
metric) Wilcox rank sum test. While we did not explicitly test it here,
the SAMmethod coupledwith themodified t-testmay providemore re-
liable results than SAM with the Wilcox rank sum test.

The SpI method uses an empirical approach to detecting differential
expression. At either a 5% or 1% FDR level, the only sensitivity or preci-
sion values above zero occurred in D1.2, at a 50% proportion level. The
AUC values and gradient of the ROC curves (Supplemental Tables S1
and S2 and Supplemental Figs. S1, S2, S3, S4) suggest that relaxing the
FDR threshold may improve the results. We calculated the sensitivity
and precision for SpI at an additional FDR level (10%, Supplemental
Fig. S5) and found that the relaxed threshold did indeed improve the
sensitivity and precision values, but only for D1.1 and D1.2. D2.1 and
D2.2 contain approximately five times as many identified proteins as
D1.1 and D1.2 which could be driving the difference at the 10% FDR
level. These results suggest that the SpI method is influenced to a great-
er extent by FDR level and the total number of proteins than the other
methods.

6.4. Additional statistical and experimental considerations

6.4.1. Sample and group sizes
We did not take into consideration a large variation in sample sizes.

Proteomic studies with sample sizes an order of magnitude larger are
few, but as technology advances, this may change. Increased sample
sizes will increase the power of all methods, but especially non-
parametric methods, such as the SAM implementation tested here.
We also only considered an experimental design of two groupswhereas
some may be interested in detecting differential expression between
three or more groups. The current implementation of several of the
methods selected here only allows for a comparison of two groups;
the underlying statistical framework for those may be extended to
three or more, but the required implementation is out of the scope of
this study.

6.4.2. Experimental protocols
Another important factor, which is addressed to a greater extent in

the CPATC Standards Initiative, is the sensitivity and reproducibility of
the experimental protocol and of the instrumentation used. For exam-
ple, out of the 2522 yeast proteins present in the samples, the LTQ-
Orbitrap 56 only identified 1475 and, out of the 48 human spiked-in
proteins, only 43 were identified. As the sensitivity and range of the
mass spectrometers improve and the protocols optimised, the subse-
quent downstream analyses may also improve and provide opportuni-
ties for statistical methods development. The choice of peptide search
and protein inference algorithms along with proteomic databases can
affect the protein identification and quantification. Mascot [26],
SEQUEST [27], X! Tandem [28], and MyriMatch [22] are commonly
used search algorithms for spectramatching. Each of themethods varies
in the underlying methodology and adjustable parameters (see review
by Nobel and MacCoss [29].) Given the recent increase in DNA and
RNA sequencing experiments, as well as protein interaction data, sever-
al methods and databases have been developed and curated to improve
protein inference and the classification of non-unique peptides. Exon–
exon junctions, splicing and sequence variants and even novel protein
coding genes can be identified using sequencing data (see Wang et al.
[30] for a review of data integration for the improvement of peptide
and protein identification). Uniprot is one of the most comprehensive
and widely used protein databases and is continually being updated
and curated [31]. Protein peptide sequences and change and protein
IDs can shift or be removed entirely. The protein identification and
quantification in an experiment will depend on the database version
used; themost up-to-date versionwill likely produce themost informa-
tive results. Finally, large-scale proteome studies, such as the recent
tissue-basedmap of the human proteome [32], may also help to inform
new inference algorithms as well as expand proteomic databases.

7. Conclusions

When designing a label-free mass spectrometry experiment, one
should also be aware of limitations of the experimental protocol as
well as the methods used for downstream analysis. As shown here,
the ability of statistical methods to detect differential expression and
control false positives is dependent on several factors and varies widely
betweenmethods. Several of themethodswe evaluated here performed
well in terms of detecting true positiveswhile controlling the number of
false negatives (DESeq and QSpec) while others detect a higher rate of
true positives as the expense of a larger number of false positives
(SAM, NSAF-PLGEM). There is no method that outperforms the rest
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with respect to 1) effect size, 2) proportion size and 3) influence of the
FDR level, but QSpec and DESeq performed comparatively well across
the scenarios and we would suggest performing future differential ex-
pression analyses with either QSpec or DESeq, or a combination of the
two. We would be wary in suggesting that one should use a combina-
tion of the results from all seven of the methods, as the high false posi-
tive to true positive rate across the seven methods is less than ideal. As
illustrated here, spectral count quantification currently works well for
larger effect sizes and moderate proportions of differentially expressed
proteins. However, advances in the LC-MS/MS instrumentation as well
as alternative statisticalmethodologiesmay increase the ability to inter-
rogate more complex experimental designs across a wide range of pro-
tein abundances.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jprot.2015.07.012.
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